Interactive Learning Using Manifold Geometry
نویسندگان
چکیده
We present an interactive learning method that enables a user to iteratively refine a regression model. The user examines the output of the model, visualized as the vertical axis of a 2D scatterplot, and provides corrections by repositioning individual data instances to the correct output level. Each repositioned data instance acts as a control point for altering the learned model, using the geometry underlying the data. We capture the underlying structure of the data as a manifold, on which we compute a set of basis functions as the foundation for learning. Our results show that manifold-based interactive learning improves performance monotonically with each correction, outperforming alternative approaches.
منابع مشابه
A Geometry Preserving Kernel over Riemannian Manifolds
Abstract- Kernel trick and projection to tangent spaces are two choices for linearizing the data points lying on Riemannian manifolds. These approaches are used to provide the prerequisites for applying standard machine learning methods on Riemannian manifolds. Classical kernels implicitly project data to high dimensional feature space without considering the intrinsic geometry of data points. ...
متن کاملSensor Map Discovery for Developing Robots
Modern mobile robots navigate uncertain environments using complex compositions of camera, laser, and sonar sensor data. Manual calibration of these sensors is a tedious process that involves determining sensor behavior, geometry and location through model specification and system identification. Instead, we seek to automate the construction of sensor model geometry by mining uninterpreted sens...
متن کاملComposition of Local Normal Coordinates and Polyhedral Geometry in Riemannian Manifold Learning
The Local Riemannian Manifold Learning (LRML) recovers the manifold topology and geometry behind database samples through normal coordinate neighborhoods computed by the exponential map. Besides, LRML uses barycentric coordinates to go from the parameter space to the Riemannian manifold in order to perform the manifold synthesis. Despite of the advantages of LRML, the obtained parameterization ...
متن کاملLinear Subspace and Manifold Learning via Extrinsic Geometry
Linear Subspace and Manifold Learning via Extrinsic Geometry by Brian St. Thomas Department of Statistical Science Duke University Date: Approved: Sayan Mukherjee, Supervisor
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009